Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

trans-Bis(3-hydroxypyridine- $\kappa \boldsymbol{N}$)diiodidoplatinum(II) dimethyl sulfoxide disolvate

Fazlul Huq, ${ }^{\text {a } *}$ Muhammed Danish, ${ }^{\text {b }}$ Wojciech Starosta ${ }^{\text {c }}$ and Janusz Leciejewicz ${ }^{\text {c }}$

${ }^{\text {a }}$ Sydney Medical School, The University of Sydney, Cumberland Campus, 75 East Street, Lidcombe, NSW 1825, Australia, ${ }^{\text {b }}$ Department of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan, and ${ }^{\text {c Institute of Nuclear }}$ Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
Correspondence e-mail: fazlul.huq@sydney.edu.au
Received 6 April 2011; accepted 26 April 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$; R factor $=0.037 ; w R$ factor $=0.114 ;$ data-to-parameter ratio $=27.8$.

In the title compound, $\left[\mathrm{PtI}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}\right)_{2}\right] \cdot 2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$, the $\mathrm{Pt}^{\mathrm{II}}$ ion lies on an inversion center and is coordinated in a slightly distorted square-planar environment by two trans iodide ligands and two pyridine N atoms. In the crystal, complex molecules and solvent dimethyl sulfoxide molecules are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For the results of activity, cell uptake and DNA binding studies of some trans-planar platinum complexes, see: Farrell et al. (1992); Bierbach et al. (1999); Huq et al. (2004); Daghriri et al. (2004); Chowdhury et al. (2005). For the structure of trans-dichloridoplatinum(II), see: Beusichem \& Farrell (1992).

Experimental

Crystal data

$\left[\mathrm{PtI}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}\right)_{2}\right] \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$

$$
\begin{aligned}
& a=6.0870(12) \AA \\
& b=7.8070(16) \AA \\
& c=12.305(3) \AA
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=76.52(3)^{\circ} \\
& \beta=82.95(3)^{\circ} \\
& \gamma=81.87(3)^{\circ} \\
& V=560.5(2) \AA^{3} \\
& Z=1
\end{aligned}
$$

Data collection
Kuma KM-4 four-circle diffractometer
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008)
$T_{\text {min }}=0.091, T_{\text {max }}=0.467$
3570 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.114$
$S=1.07$
3281 reflections

Mo $K \alpha$ radiation
$\mu=9.22 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.19 \times 0.15 \times 0.05 \mathrm{~mm}$

3281 independent reflections 2568 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
3 standard reflections every 200 reflections
intensity decay: 25.2%

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{2}$	0.82	1.77	$2.583(7)$	173

Symmetry code: (i) $-x+2,-y,-z+2$.
Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5232).

References

Beusichem, N. V. \& Farrell, N. (1992). Inorg. Chem. 31, 634-639.
Bierbach, U., Qu, Y., Hambley, T.W., Peroutka, J., Nguyen, H.L., Doedee, M. \& Farrell, N. (1999). Inorg. Chem. 38, 3535-3542.
Chowdhury, A., Huq, F., Abdullah, A., Beale, P. \& Fisher, K. (2005). Inorg. Biochem. 99, 1098-1112.
Daghriri, H., Huq, F. \& Beale, P. (2004). Inorg. Biochem. 98, 1722-1733.
Farrell, N., Kelland, L. R., Roberts, J. D. \& Beusichem, M. V. (1992). Cancer Res. 52, 5065-5072.
Huq, F., Yu, J. Q., Daghriri, H. \& Beale, P. (2004). Inorg. Biochem. 98, 12611270.

Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.
Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.
Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

trans-Bis(3-hydroxypyridine- κN)diiodidoplatinum(II) dimethyl sulfoxide disolvate

F. Huq, M. Danish, W. Starosta and J. Leciejewicz

Comment

Currently, attention is focused on platinum compounds that can bind to DNA differently than cisplatin with the idea that the different nature of binding with DNA may result into an altered spectrum of activity (Daghriri et al., 2004). One such class of compounds are trans- planaramineplatinum complexes that bind with DNA to form mainly interstrand bifunctional $1,2-\operatorname{Pt}(\mathrm{GG})$ adduct whereas cisplatin and its analogues form mainly intrastrand $1,2-\operatorname{Pt}(\mathrm{GG})$ and $1,2-\mathrm{Pt}(\mathrm{AG})$ adducts (Huq et al., 2004). A number of trans-planaramineplatinum complexes have been prepared (Huq et al., 2004; Chowdhury et al., 2005; Beusichem \& Farrell, 1992; Bierbach et al., 1999; Farrell et al., 1992). They have shown in vitro activity similar to cisplatin against various cancer cell lines. One of these compounds is trans-dichloro-bis(3-hydroxypyridine) platinum(II) (Huq et al., 2004). In the title compound the chloride ligands have been replaced by iodide ligands. The crystal structure contains discrete molecules in which $\mathrm{Pt}^{\mathrm{II}}$ ions lie on inversion centers (Fig. 1). $\mathrm{Pt}^{\mathrm{II}}$ ions are coordinated to two symmetry related 3-hydroxypyridine ligand molecules via the pyridine N atoms and by two iodide ligands in a trans mode. The 3-hydroxypyridine ligand is planar with an r.m.s. of 0.0060 (2) \AA. The coordination plane $\mathrm{Pt} / \mathrm{N} 1 / \mathrm{I} 1 / \mathrm{N} 1^{\mathrm{i}} / \mathrm{L} 1^{\mathrm{i}}$ (Symmetry code: (i) $-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1$) forms an angle of $72.8(2)^{\circ}$ with the ligand plane (N1/C2-C6/O1). In the crystal, complex molecules and solvent dimethyl sulfoxide molecules are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2).

Experimental

$1.0 \mathrm{mmol}(415 \mathrm{mg})$ of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ was dissolved in 10 ml of ml water and $12 \mathrm{mmol}(2.0 \mathrm{~g})$ of KI was added and stirred for 30 min . $2.0 \mathrm{mmol}(192 \mathrm{mg})$ of 3-hydroxypyridine, dissolved in 5 ml of ml water by sonification, was added with stirring to the mixture that was kept in ice. The mixture was stirred at room temperature for about 24 h . The yellow precipitate of Pt (3-hydroxypyridine) $)_{2} \mathrm{I}_{2}$ was collected by filtration, washed with ice cold water and ethanol, then air-dried. The precipitate was dissolved in a 1:1 DMSO:water mixture on heating and left standing. Crystals were obtained after 15 days.

Refinement

The hydroxy group was included in the refinemnt with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O}) . \mathrm{H}$ atoms bonded to C atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$ and treated as riding on the parent atoms with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ or $U_{\text {iso }}(H)=1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$.

supplementary materials

Figures

Fig. 1. The labeled asymmetric unit and symmetry generated ($-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1$) atoms of the complex molecule of the title compound with 50% probability displacement ellipsoids.

Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
(I)

Crystal data

$\left[\mathrm{PtI}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}\right)_{2}\right] \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$
$M_{r}=795.35$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.0870(12) \AA$
$b=7.8070(16) \AA$
$c=12.305(3) \AA$
$\alpha=76.52(3)^{\circ}$
$\beta=82.95(3)^{\circ}$
$\gamma=81.87(3)^{\circ}$
$V=560.5(2) \AA^{3}$
$Z=1$
$F(000)=368$
$D_{\mathrm{x}}=2.356 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=6-15^{\circ}$
$\mu=9.22 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate, pale yellow
$0.19 \times 0.15 \times 0.05 \mathrm{~mm}$

Data collection

Kuma KM-4 four-circle
diffractometer
Radiation source: fine-focus sealed tube
graphite
profile data from $\omega / 2 \theta$ scans
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
$T_{\text {min }}=0.091, T_{\text {max }}=0.467$
3570 measured reflections
3281 independent reflections

2568 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=30.1^{\circ}, \theta_{\text {min }}=1.7^{\circ}$
$h=0 \rightarrow 8$
$k=-10 \rightarrow 10$
$l=-17 \rightarrow 17$
3 standard reflections every 200 reflections
intensity decay: 25.2%

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.114$
$S=1.07$
3281 reflections
118 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0739 P)^{2}+0.7284 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=1.59 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-2.75$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Pt1	0.5000	0.5000	0.5000	$0.03310(11)$
I1	$0.52440(7)$	$0.68468(5)$	$0.64805(4)$	$0.04702(13)$
S1	$0.9980(3)$	$0.2348(2)$	$0.93997(17)$	$0.0497(4)$
N1	$0.6905(8)$	$0.2937(6)$	$0.5856(4)$	$0.0358(9)$
O1	$0.6176(9)$	$-0.0245(7)$	$0.8443(5)$	$0.0581(14)$
H1	0.7052	-0.0992	0.8805	0.087^{*}
O2	$1.1336(10)$	$0.2639(7)$	$1.0279(5)$	$0.0606(14)$
C2	$0.6050(10)$	$0.1983(8)$	$0.6833(5)$	$0.0407(12)$
H2	0.4573	0.2293	0.7080	0.049^{*}
C3	$0.7252(10)$	$0.0565(7)$	$0.7490(5)$	$0.0385(11)$
C6	$0.9025(10)$	$0.2500(8)$	$0.5501(6)$	$0.0425(13)$
H6	0.9629	0.3151	0.4826	0.051^{*}
C4	$0.9432(11)$	$0.0105(8)$	$0.7117(6)$	$0.0449(13)$
H4	1.0283	-0.0857	0.7528	0.054^{*}
C5	$1.0354(11)$	$0.1105(9)$	$0.6109(6)$	$0.0470(14)$
H5	1.1835	0.0837	0.5852	0.056^{*}
C11	$1.0277(16)$	$0.4169(11)$	$0.8257(7)$	$0.063(2)$
H11A	0.9749	0.5250	0.8500	0.095^{*}

H11B	0.9423	0.4073	0.7673	0.095^{*}
H11C	1.1819	0.4176	0.7978	0.095^{*}
C12	$0.7179(15)$	$0.2967(17)$	$0.9862(10)$	$0.087(3)$
H12A	0.6764	0.2172	1.0555	0.130^{*}
H12B	0.6230	0.2911	0.9306	0.130^{*}
H12C	0.7020	0.4156	0.9976	0.130^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	$0.02968(15)$	$0.02872(14)$	$0.03610(16)$	$0.00271(9)$	$-0.00194(10)$	$-0.00172(10)$
I 1	$0.0506(2)$	$0.0420(2)$	$0.0489(3)$	$0.00216(18)$	$-0.00824(19)$	$-0.01362(18)$
S 1	$0.0558(9)$	$0.0362(7)$	$0.0553(10)$	$-0.0041(6)$	$-0.0098(8)$	$-0.0051(7)$
N 1	$0.039(2)$	$0.0284(19)$	$0.036(2)$	$0.0004(17)$	$-0.0004(18)$	$-0.0029(17)$
O 1	$0.048(3)$	$0.055(3)$	$0.057(3)$	$-0.006(2)$	$-0.005(2)$	$0.017(2)$
O2	$0.070(3)$	$0.047(3)$	$0.063(3)$	$-0.002(2)$	$-0.027(3)$	$0.000(2)$
C 2	$0.035(3)$	$0.037(3)$	$0.045(3)$	$0.006(2)$	$-0.006(2)$	$-0.003(2)$
C3	$0.040(3)$	$0.030(2)$	$0.042(3)$	$-0.003(2)$	$-0.003(2)$	$-0.002(2)$
C6	$0.037(3)$	$0.040(3)$	$0.046(3)$	$0.004(2)$	$-0.001(2)$	$-0.006(2)$
C4	$0.044(3)$	$0.040(3)$	$0.048(3)$	$0.004(2)$	$-0.012(3)$	$-0.007(3)$
C5	$0.036(3)$	$0.050(3)$	$0.051(4)$	$0.008(2)$	$-0.004(2)$	$-0.011(3)$
C11	$0.082(6)$	$0.053(4)$	$0.045(4)$	$0.006(4)$	$-0.003(4)$	$0.000(3)$
C12	$0.052(5)$	$0.111(8)$	$0.099(8)$	$-0.030(5)$	$0.011(5)$	$-0.024(7)$

Geometric parameters ($\left.\AA{ }^{\circ}{ }^{\circ}\right)$

$\mathrm{Pt} 1-\mathrm{N} 1^{\text {i }}$	2.007 (5)	C3-C4	1.376 (9)
Pt1-N1	2.007 (5)	C6-C5	1.385 (8)
Pt1-I1	2.6021 (8)	C6-H6	0.9300
Ptt- $111^{\text {i }}$	2.6021 (8)	C4-C5	1.402 (10)
S1-O2	1.514 (6)	C4-H4	0.9300
S1-C11	1.763 (8)	C5-H5	0.9300
S1-C12	1.767 (10)	C11-H11A	0.9600
N1-C6	1.334 (7)	C11-H11B	0.9600
N1-C2	1.345 (8)	C11-H11C	0.9600
O1-C3	1.336 (8)	C12-H12A	0.9600
O1-H1	0.8200	C12-H12B	0.9600
C2-C3	1.383 (8)	C12-H12C	0.9600
C2-H2	0.9300		
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Pt} 1-\mathrm{N} 1$	179.999 (1)	N1-C6-H6	119.0
N1 ${ }^{\text {i }}$-Pt1-I1	89.13 (15)	C5-C6-H6	119.0
N1-Ptl-I1	90.87 (15)	C3-C4-C5	119.1 (6)
$\mathrm{N} 1^{\text {i }}-\mathrm{Pt1}-\mathrm{I} 1^{\text {i }}$	90.87 (15)	C3-C4-H4	120.5
N1-Pt1-I1 ${ }^{\text {i }}$	89.13 (15)	C5-C4-H4	120.5
$\mathrm{I} 1-\mathrm{Pt} 1-\mathrm{I} 1^{\text {i }}$	180.0	C6-C5-C4	119.0 (6)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 11$	105.5 (4)	C6-C5-H5	120.5
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 12$	105.1 (5)	C4-C5-H5	120.5

sup-4

supplementary materials

$\mathrm{C} 11-\mathrm{S} 1-\mathrm{C} 12$	$97.6(5)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2$	$118.5(5)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{Pt} 1$	$122.1(4)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Pt} 1$	$119.5(4)$
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{H} 1$	109.5
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{C} 3$	$123.5(5)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2$	118.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	118.3
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$125.5(5)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	$116.5(6)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$118.0(6)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$121.9(6)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.82

$\mathrm{H} \cdots A$
1.77
$D \cdots A$
$2.583(7)$
$D-\mathrm{H} \cdots A$
173

S1-C11-H11A	109.5
S1-C11-H11B	109.5
H11A-C11-H11B	109.5
S1-C11-H11C	109.5
H11A-C11-H11C	109.5
H11B-C11-H11C	109.5
S1-C12-H12A	109.5
S1-C12-H12B	109.5
H12A-C12-H12B	109.5
S1-C12-H12C	109.5
H12A-C12-H12C	109.5
H12B-C12-H12C	109.5

$\mathrm{H} \cdots A$
2.583 (7)

Symmetry codes: (ii) $-x+2,-y,-z+2$.

supplementary materials

Fig. 1

Fig. 2

